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Abstract

Multilevel representations have been stud-
ied extensively by arti�cial intelligence re-
searchers. We present a general method that
utilizes the multilevel paradigm to attack the
problem of performing multidiscipline engi-
neering design optimization in the presence
of many local optima. The method uses a
multidisciplinary simulator at multiple levels
of abstraction, paired with a multilevel search
space. We tested the method in the domain
of conceptual design of supersonic transport
aircraft, focusing on the airframe and the ex-
haust nozzle, and using sequential quadratic
programming as the optimizer at each level.
We found that using multilevel simulation and
optimization can decrease the cost of design
space search by an order of magnitude.

1 Introduction

A major barrier to the use of gradient-based
search methods for engineering design is that
complex, multidisciplinary design spaces tend
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to have many apparent local optima | both
real and pathological. In Section 4 we de�ne
a pathological local optimum as one that the
optimizer declares to be a local optimum, but
that is not an optimum in the true physics
of the problem, and we explore the causes of
pathological local optima.

One approach to the problem of multiple
local optima is to use global search methods
such as genetic algorithms and simulated an-
nealing. We would, however, like to exploit the
power of gradient-based optimization methods
to quickly converge on the optimum. Our gen-
eral approach (described in Section 5) is there-
fore to use gradient-based optimization at mul-
tiple search space levels (where each level has
a much smaller number of apparent local op-
tima), coupled with multiple levels of abstrac-
tion in the simulator.

Multilevel representations have been stud-
ied extensively by arti�cial intelligence re-
searchers. Multilevel techniques for planning
and theorem proving go back as far as AB-
STRIPS.1 The importance of decomposing a
problem into multiple levels was discussed at
length in Simon's classic work on AI and De-
sign.2 Some researchers have applied the mul-
tilevel paradigm to engineering design,3{6 but
have not focused on the use of multilevel op-
timization to deal with multiple optima in the
search space.

It might be asked how complex design prob-
lems are approached today. Human design-
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ers often decompose multidisciplinary design
problems into smaller components that are
then designed by di�erent groups of people,
but this entire process is generally carried out
without the use of automated design. Our
multilevel optimization method can therefore
be seen as an automation of the approach typ-
ically taken by groups of human designers.

We tested our technique in the domain of
conceptual design of supersonic aircraft, focus-
ing on the airframe and the jet engine exhaust
nozzle, and found that using multiple levels
of simulation and optimization improves opti-
mization performance by an order of magni-
tude.

2 Related work

Other work that uses the multilevel paradigm
is described in the introduction section, but
none of this work focuses on the problem of
performing optimization in the presence of
many local optima. Much work has been done
on the use of simulated annealing and genetic
algorithms to deal with search spaces with
many local optima,7{9 but none of this work
has proposed the use of multiple levels of ab-
straction to reduce the number of apparent lo-
cal optima that must be handled by the opti-
mizer at any given time. Simulated annealing
and genetic algorithms tend to be much slower
than gradient-based optimization. They tend
to require thousands, or even tens of thou-
sands, of simulations and are thus not prac-
tical when each simulation is expensive.

A great deal of work has been done
in the area of numerical optimization al-
gorithms. Gill10 provides an applications-
oriented overview of numerical optimization
algorithms. Peressini11 describes the mathe-
matics of nonlinear programming algorithms.
Vanderplaats12 describes the application of
numerical optimization to engineering de-

sign. Mor�e and Wright13 provide a guide to
commercially available numerical optimization
software. None of this literature addresses the
particular di�culties of attempting to opti-
mize functions de�ned by large \real-world"
numerical simulators.
A number of research e�orts have combined

AI techniques with numerical optimization.
Ellman et al.14 describe a method for switch-
ing between a less expensive, less accurate
simulator, and a more expensive, more accu-
rate simulator during optimization, based on
the magnitude of the gradient. Bouchard et
al.15 describe ways in which expert systems
could be applied to the parametric design of
aeronautical systems. Hoeltzel and Chieng16

describe a system for digital chip design in
which design is done at an abstract level, using
machine learning to estimate the performance
that would be obtained if the design were car-
ried out at a more detailed level. Orelup et
al.17 describe a system called Dominic II that
uses an expert system to switch among vari-
ous strategies during numerical optimization.
None of these e�orts is focused directly on the
problems of multiple local optima addressed in
this article.
Powell8, 18, 19 has built a module called

Inter-GEN, part of the ENGINEOUS sys-
tem,20 that seeks to combine the ability of ge-
netic algorithms to handle multiple local op-
tima with the speed of numerical optimization
algorithms. It contains a genetic algorithm,
and a numerical optimizer, and uses a rule-
based expert system to decide when to switch
between the two. Powell has tested his system
on a realistic jet engine design problem.
Gage21, 22 has also combined genetic algo-

rithms with gradient-based optimization. He
combined GA's with Sequential Quadratic
Programming (SQP; see Section 3) in two
ways. The �rst method, which he tested in
the domain of aircraft wing design, �rst uses
a GA to search a space of wing con�gurations
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that is described using a grammar, and then
uses SQP to optimize the size of the wings.
The second method, which he tested in the do-
main of truss design, uses the GA to search a
space of truss con�gurations that is described
using a grammar, while using SQP at each it-
eration of the GA to optimize the size of the
members. Using the GA to search a con�gu-
ration space before using SQP to optimize the
sizes in a particular con�guration can be seen
as a method of search space selection which ad-
dresses the problem of multiple local optima.
Further, the GA has the potential to �nd a
smooth subspace of the overall search space
before starting SQP.

Work on the use of numerical optimiza-
tion in aircraft design includes that of
Sobieszczanski-Sobieski et al.4 and Kroo et
al.23 Bramlette et al.24 survey the ap-
plication of genetic algorithms to the de-
sign and manufacture of aeronautical systems.
Sobieszczanski-Sobieski and Haftka25 provide
a survey of multidisciplinary aerospace design
optimization.

3 Search Procedure

In this article we will focus on search of a space
of candidate designs using numerical optimiza-
tion methods which vary a set of continuous
parameters to minimize a nonlinear objective
function subject to a set of nonlinear equal-
ity and inequality constraints. The numerical
optimizer used in the experiments described
in this article is CFSQP26 (C code for Fea-
sible Sequential Quadratic Programming), a
state-of-the-art implementation of the Sequen-
tial Quadratic Programming method. (Ear-
lier we tried doing optimization in this domain
using several di�erent optimization packages,
and found that we obtained the best results
when using CFSQP.) Sequential Quadratic
Programming is a quasi-Newton method that

solves a nonlinear constrained optimization
problem by solving a sequence of quadratic
programming problems (a quadratic program-
ming problem consists of a quadratic objective
function to be optimized, and a set of linear
constraints) as follows:

1. �t a quadratic programming problem to
the constrained nonlinear programming
problem

2. solve the quadratic programming problem

3. perform a minimization along the line de-
�ned by the current point and the mini-
mum of the quadratic programming prob-
lem

4. repeat

4 Pathological optima

We de�ne an apparent local optimum to be
a point that our optimizer, CFSQP (see Sec-
tion 3), declares to be a local optimum. Such
a point may be a true local optimum in the
true physics of the problem, or it may be a
pathological local optimum. Pathological local
optima occur for several reasons.
CFSQP terminates when one of two condi-

tions is met. The �rst is that the Kuhn-Tucker
conditions27 are satis�ed (within certain toler-
ances). The Kuhn-Tucker conditions are nec-
essary but not su�cient for a point to be a
local optimum. Further, they are based on cer-
tain assumptions about the smoothness of the
objective and constraint functions, which may
not hold for objective and constraint func-
tions that are de�ned by realistic simulators.
When these smoothness assumptions are vi-
olated, the Kuhn-Tucker conditions are nei-
ther necessary nor su�cient for a point to
be a local optimum. The second condition
which causes CFSQP to terminate is the fail-
ure of the line search in the direction of the
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minimum of the quadratic programming prob-
lem to �nd a point that improves the objec-
tive function while satisfying all of the con-
straints. This condition can occur at points in
the search space where the objective or con-
straint functions are nonsmooth. One type of
nonsmoothness | also known as \ridges" |
is caused by discontinuities in the objective
or constraint functions or their derivatives.
\Near ridges" | portions of the search space
that are smooth, but that have very large sec-
ond derivatives | can similarly fool CFSQP.
In the aircraft design example that we present
in Section 8, the global optimum actually vi-
olates the Kuhn-Tucker conditions. CFSQP
stops there because of its second termination
condition, suggesting that the search space
is nonsmooth at the global optimum. Inter-
estingly, the multistart optimization (see Sec-
tion 5) found about 25 other local optima, all
of which satisfy the Kuhn-Tucker conditions
(within a certain tolerance). The question of
whether a point in a multidimensional space is
a local optimum, in the absence of smoothness
assumptions, is undecidable,28 so it would not
be possible for an optimizer to have a \per-
fect" termination criterion that only stopped
at true local optima in an arbitrary space.

Another source of pathological local optima
is numerical truncation error in the solvers
within the simulator. These errors can result
in local optima in the search space de�ned by
the simulator that are not in fact local optima
in the true physics. Apparent local optima are
a barrier to the use of optimization, whether
they are real or pathological.

5 The General Method

Because the search space has many appar-
ent local optima, we use a technique that we
call \random multistart" to attempt to �nd
the global optimum. In an n-point random

multistart, the engineer �rst chooses a box
which he or she believes will contain all rea-
sonable designs. The system randomly gen-
erates starting points within this box until it
�nds n evaluable points, and then performs a
gradient-based optimization from each of these
points. (Some randomly generated designs,
which we call \unevaluable points," cannot
be simulated, either because the designs are
meaningless or because of limitations of the
simulator.) The best design found in these n
optimizations is taken to be the global opti-
mum.
Our approach is to use random multistart

gradient-based optimization at multiple search
space levels, coupled with multiple levels of ab-
straction in the simulator. We propose two
ways of creating these levels. The �rst is
decomposition. The search space levels are
formed by decomposing the set of design pa-
rameters into two or more subsets. These sub-
sets will typically correspond to di�erent com-
ponents of the artifact, such as the airframe
and the nozzle of an aircraft. These subsets
may be disjoint, or it may be necessary for a
small number of design parameters to occur
in more than one subset. The most important
parameters of one component may be included
in another component's abstract space in or-
der to serve as a proxy for the �rst component
during optimization. The search space levels
should be de�ned in such a way that the dif-
ferent levels are as independent as possible |
that is, the optimal values in one subset should
not depend strongly on the values in the other
subset. If the overall space is approximately a
product space of the abstract spaces, and the
abstract spaces each have a moderate number
of local optima, then the number of local op-
tima in the overall space will be approximately
equal to the product of the number of optima
in each of the abstract spaces. Thus by de-
composing the problem into multiple levels, it
should be possible to optimize in search spaces
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with a much smaller number of local optima.
For example, it may be the case that the two
decomposed spaces have n and m apparent lo-
cal optima, respectively, and the overall space
has mn apparent local optima. If the num-
ber of multistarts needed to �nd the global
optimum with a certain probability varies lin-
early with the number of apparent local op-
tima, then the cost of having a certain prob-
ability of �nding the global optimum will be
O(mn) in the overall space, and only O(m+n)
in the decomposed space.

The second method of creating the levels is
abstraction. In this case, the levels form a hier-
archy in which the earlier levels are simpli�ed
abstractions of the later levels. The earlier lev-
els represent the same design at a lower level
of detail than do the later levels.

In both cases, it is also helpful to have a
simulator which can simulate at di�erent levels
of abstraction corresponding to the di�erent
levels of the search space. When optimizing
one component of the overall design, it helps
to have a simulator that simulates the other
components at a lower level of detail. When
optimizing at an abstract level, it also helps to
use a simpli�ed simulator. Such a simpli�ed
simulator can be faster and less pathological
than the full simulator.

6 Aircraft Design

We have pursued our investigation in the do-
main of conceptual design of supersonic trans-
port aircraft.29 However, in our design task
the key design variables have already been
identi�ed (in collaboration with an aircraft in-
dustry design expert) so a more precise charac-
terization of our problem might be \paramet-
ric design at a system level of abstraction".

Figure 1 shows a diagram of the airframe of
a typical airplane automatically designed by
our software system to 
y the mission shown in
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engineScale=1.53605
wing_area(m^2)=432.265
wing_aspect_ratio=1.56595
fuselage_taper_length(m)=37.0506
wing_t_over_c=0.0299907
fuel_annulus_width(m)=0
passenger_cabin_radius(m)=1.3716
structure_annulus_width(m)=0.3048
fuselage_mid_length(m)=27.432
fuselage_diameter(m)=3.3528
wing_sweep(rad)=1.21285
wing_root_chord(m)=33.2289
wing_span(m)=26.0174
v_tail_sweep(rad)=0.785398
v_tail_root_chord(m)=11.6075
v_tail_taper_ratio=0.33
v_tail_semi_span(m)=3.85948
v_tail_t_over_c=0.03
nacelle_length(m)=11.5824
nacelle_inlet_diameter(m)=0.85344
engine_diameter(m)=1.13643
wing_sweep_over_design_mach_angle=1.15818
wing_taper_ratio=0

Figure 1: Supersonic transport aircraft de-
signed by our system (dimensions in meters)
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Altitude Duration
Phase Mach m ft (min) comment
1 0.227 0 0 5 \takeo�"
2 0.85 12 192 40 000 85 subsonic cruise (over land)
3 2.0 18 288 60 000 180 supersonic cruise (over ocean)

capacity: 70 passengers.

Table 1: Mission speci�cation for aircraft in Figure 1

Table 1. This mission is for a supersonic pas-
senger transport, so a key requirement is the
passenger capacity (70 persons in this case).
The mission has three key phases: a short,
low-speed, ground level phase to test takeo�
capability, a subsonic cruise phase represent-
ing travel over land where supersonic 
ight
is prohibited, and �nally a supersonic cruise
phase corresponding to an ocean crossing.
In our system, the optimizer attempts to

�nd a good aircraft conceptual design for a
particular mission by varying major aircraft
parameters such as wing area, aspect ratio, en-
gine size, etc., using a numerical optimization
algorithm. The optimizer evaluates candidate
designs using a multidisciplinary simulator. In
our current implementation, the design goal is
to minimize the takeo� mass of the aircraft,
a measure of merit commonly used in the air-
craft industry at the conceptual design stage.
Takeo� mass is the sum of fuel mass, which
provides a rough approximation of the operat-
ing cost of the aircraft, and \dry" mass, which
provides a rough approximation of the cost of
building the aircraft. The simulator computes
the takeo� mass of a particular aircraft design
for a particular mission as follows:

1. Compute \dry" mass using historical data
to estimate the weight of the aircraft as
a function of the design parameters and
passenger capacity required for the mis-

sion.

2. Compute the landing massm(t�nal) which
is the sum of the fuel reserve plus the
\dry" mass.

3. Compute the takeo� mass by numerically
solving the ordinary di�erential equation

dm

dt
= f(m; t) (1)

which indicates that the rate at which the
mass of the aircraft changes is equal to
the rate of fuel consumption, which in
turn is a function of the current mass of
the aircraft and the current time in the
mission. At each time step, the simula-
tor's aerodynamic model is used to com-
pute the current drag, and the simulator's
propulsion model is used to compute the
fuel consumption required to generate the
thrust which will compensate for the cur-
rent drag.

To test the techniques described in this pa-
per, we used a twelve-dimensional design space
in which the optimizer varied the following
aircraft design parameters over a continuous
range of values:

1. engine size
2. wing area
3. wing aspect ratio
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4. fuselage taper length (how \pointed" the
fuselage is)

5. e�ective structural thickness over chord
(a nondimensional measure of wing thick-
ness)

6. wing sweep over design mach angle (a
nondimensional measure of wing sweep)

7. wing taper ratio (wing tip chord divided
by wing root chord)

8. fuel annulus width (the amount of space
left in the fuselage for fuel)

9. nozzle convergent 
ap length (lc)
10. nozzle divergent 
ap length (ld)
11. nozzle external 
ap length (le)
12. nozzle radius at station 7 (r7)

This set of twelve design variables was cho-
sen in collaboration with an aircraft industry
design expert.� However, in these experiments
we omitted discrete parameters, such as num-
ber of engines, which did not �t well with
our continuous nonlinear programming search
method. Since there are only a small number
of choices, in practice our continuous design
methodology could simply be repeated several
times using di�erent numbers of engines, and
the best of these four or �ve designs could
be chosen. A more general approach would
be the use of mixed integer/continuous pro-
gramming techniques as a search procedure,
but that would require signi�cant additional
research.
Our optimizations focused on two aspects of

the aircraft: the airframe, which is described
by the �rst eight parameters (see Figure 1),
and the exhaust nozzle, which is described by
the last four parameters. Figure 2 shows the
class of nozzles supported by the current sys-
tem, the axisymmetric scheduled convergent-
divergent exhaust nozzles often found in super-
sonic aircraft.30 In Figure 2, r10, re, and r7 are
�xed radii, and r8 and r9 are radii which are
mechanically varied during aircraft operation.

�Dr. Gene Bouchard of Lockheed

r10 is the outer radius of the engine to which
the nozzle is attached, re is the radius of the
duct leaving the engine, r7 is the radius of the
duct at the beginning of the movable conver-
gent section of the nozzle, r8 is the (variable)
radius of the nozzle throat, and r9 is the (vari-
able) nozzle exit radius. Mechanically, this
nozzle is a four-bar linkage, with three mov-
able links labeled in Figure 2 by their lengths
lc, ld, and le. During aircraft operation, the
linkage is moved to change r8 so that the cross-
sectional area at the nozzle throat will produce
desired engine performance. Since a four-bar
linkage with three movable links has one de-
gree of freedom, setting r8 also sets r9. In
the experiments described in this paper, we
allowed the optimizer to vary lc, ld, le, and r7.
Our aircraft simulator supports two di�er-

ent ways of simulating the nozzle, which we
use as two di�erent levels of abstraction in
our multilevel optimizations. The �rst method
takes as input the parameters describing the

ap lengths within the nozzle, and simulates
the actual operation of the nozzle throughout
the mission. The second method uses what is
known as an \ideal nozzle." This method does
not actually simulate the movement of the

aps within the nozzle, but instead assumes
that the nozzle will always produce a certain
e�ciency. This abstraction of the model al-
lows faster simulation, and does not require
the nozzle 
ap lengths to be input to the simu-
lator. A complete mission simulation requires
about 1/2 second of CPU time on a DEC Al-
pha 250 4/266 desktop workstation when us-
ing the four-bar nozzle, and about 1/4 second
when using the ideal nozzle.
The optimizations described in this paper

were performed subject to a set of constraints.
Table 4 lists the constraints, along with the
values of the constraint functions at the point
which we believe is the global optimum. The
nozzle geometry bound constraints require, for
example, that the speci�ed nozzle 
aps be con-
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Figure 2: Axisymmetric convergent-divergent exhaust nozzle (
ow from left to right)

nectable. The table bound constraints require
that the simulator not have to extrapolate out-
side the tables of experimental data which it
uses. The aerodynamic bounds require, for
example, that the lift coe�cient required to

y the speci�ed design over the speci�ed mis-
sion not exceed one. There is a sanity check
to make sure that the work performed by the
actuators in the nozzles is positive. Finally,
the passenger constraint requires that there
be enough room in the plane for the speci-
�ed number of passengers. A more complete
description of the constraints can be found in
the appendix.

7 The De-

sign Associate and Mod-

eling/Simulation

Associate

Figure 3 shows a block diagram of our auto-
mated conceptual design system. The design
system has two major components: the Design
Associate (DA), which searches the space of
candidate designs, and the Model/Simulation
Associate (MSA), which the DA uses to eval-

uate the quality of candidate designs. Un-
like the discrete search spaces more commonly
studied by AI researchers, the search space
for the aircraft conceptual design problem in-
volves design variables such as wing area or
aspect ratio which can be varied continuously
throughout an interval of possible values. To
search this space, the DA uses a constrained
nonlinear numerical optimizer, which varies
the set of continuous design variables to min-
imize a nonlinear objective function subject
to a set of nonlinear equality and inequal-
ity constraints. As mentioned previously, for
the experiments reported in this article, the
nonlinear objective function to be minimized
is the takeo� mass required for a particu-
lar candidate aircraft design to 
y a partic-
ular mission, and the optimizer used is CF-
SQP. The Model/Simulation Associate com-
putes the values of the objective function and
the design constraints, as well as a set of model
constraints which are used to prevent the op-
timizer from going into regions of the search
space that violate the simulator's underlying
assumptions.31 All of the constraints are fur-
ther described in the appendix.

The data 
ow in Figure 3 is as follows:
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Figure 3: Automated design system block diagram

� The search manager (in conjunction with
the random starting point generator)
passes to the constrained nonlinear op-
timizer a design represented as a vector
of real numbers, the values of the design
variables. The optimizer uses this initial
design as a starting point and later passes
back an improved design using the same
representation.

� The constrained nonlinear optimizer (di-
rectly or via the gradient computation
module) passes to the evaluation modules
a design, again represented as a vector of
values of the design variables. The de-
sign constraint evaluation module passes
back a vector of real numbers representing
the values of the design constraints, the
model constraint module does the same
for model constraints, and the objective
function evaluation module passes back
a scalar value for design quality, which
however is only meaningful if all the con-
straints are satis�ed.

� The evaluation modules pass on to the
simulator the design passed to them, and
the simulator passes back a complete set
of simulation results from which each
evaluation module then extracts the data
it needs.

In order to handle unevaluable points (i.e.,
points whose objective function cannot be
evaluated by the simulator because, for exam-
ple, the simulator crashes or returns an error
message), the DA includes methods for \in-
telligent" gradient computation. The gradi-
ents used by CFSQP are computed by using a
set of rules that specify how to compute gra-
dients with reasonable accuracy in the pres-
ence of unevaluable points. For example, if
the DA evaluates three candidate designs in
order to compute a component of the gradient
using a central di�erence formula, and if one of
the points is unevaluable, then the DA ignores
the unevaluable point and uses the other two
points in a forward di�erence formula. The
DA's rules for gradient computation are de-
scribed in our previous work.32 In addition, we
have arranged for the line searches in CFSQP
to terminate when they encounter unevaluable
points.

8 Experimental Results

We made the following hypotheses:

1. Using an appropriately selected two-level
decomposition for optimization will pro-
duce better optimization performance
(lower CPU cost for the same probabil-
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ity of getting a given design quality) than
using one-level optimization.

2. Using an appropriately selected three-
level decomposition for optimization will
produce better optimization performance
than using the two-level decomposition
for optimization.

3. The same multilevel decompositions will
produce good optimization performance
for di�erent missions.

To test our hypotheses, we performed opti-
mizations using one, two, or three levels of de-
composition, and then compared the results.

8.1 One-level optimization

First we tried doing optimization without the
use of any multilevel techniques. We used
the four-bar nozzle simulator, and used CF-
SQP to optimize in the search space de�ned
by all twelve design parameters. Because this
search space has many apparent local optima,
we used a 100-point random multistart within
the box of Table 2 to attempt to �nd the
global optimum. The �rst curve in Figure 4
shows the estimated cost (number of simu-
lations) of having a 99% chance of getting
within various fractions of the takeo� mass
that we believe to be the global optimum us-
ing this method. (We do not know with cer-
tainty what the global optimum is. Finding
the global optimum of an arbitrary nonlin-
ear function is undecidable.28 However, we
have performed many optimizations from dif-
ferent random starting points, and a large
number of them have converged to the same
point. We call this point \the apparent global
optimum.") This estimate is computed by
multiplying the average cost per optimization
times log(1�Pdesired)= log(1�Psuccess), where
Pdesired is the desired probability of getting
within the speci�ed fraction of the apparent

global optimum (99% in this case) and Psuccess

is the probability of any single optimization
getting within the speci�ed fraction of the ap-
parent global optimum (which we estimate us-
ing the fraction of our 100 optimizations that
got within this fraction of the apparent global
optimum). (The formula can be derived as
follows: (1 � Psuccess) is the probability that
a single optimization will not �nd the global
optimum, so (1 � Psuccess)

n is the probabil-
ity that none of n optimizations will �nd the
global optimum, and thus (1� (1�Psuccess)

n)
is the probability that at least one of n opti-
mizations will �nd the global optimum. To
�nd the cost of Pdesired, a given desired prob-
ability of �nding the global optimum, solve

Pdesired = 1� (1� Psuccess)
n (2)

for n, which gives

n = log(1� Pdesired)= log(1� Psuccess) (3)

and �nally multiply n by the average cost per
optimization. Note: the computed value of n
is not necessarily an integer, so a more precise
calculation would round n up to the nearest
integer.)

8.2 Two-level optimization

Since the one-level optimization was un-
acceptably expensive, we attempted to re-
duce the optimization cost by decomposing
the search space into two levels. As our �rst
level, we used the eight airframe parameters,
and the ideal nozzle simulator. As our second
level, we used the four nozzle parameters, and
the four-bar nozzle simulator. CFSQP quickly
found the point that we believe to be the opti-
mum in the eight-dimensional airframe space,
which was encouraging. The design param-
eters of the apparent optimum in the eight-
dimensional space are shown in Table 3. We
then �xed the values of the eight parameters
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Design Parameter low high
engine size 0.5 3

wing area 139.4 m2 (1500 ft2) 1254.2 m2 (13 500 ft2)
wing aspect ratio 1 2
fuselage taper length 30.48 m (100 ft) 60.96 m (200 ft)
e�ective structural thickness over chord 1 5
wing sweep over design mach angle 1 1.45
wing taper ratio 0 0.1
fuel annulus width 0 1.219 m (4 ft)
nozzle convergent 
ap length 0.0762 m (3 in) 1.219 m (48 in)
nozzle divergent 
ap length 0.2286 m (9 in) 3.048 m (120 in)
nozzle external 
ap length 0.6096 m (24 in) 3.048 m (120 in)
nozzle radius at station 7 0.0254 m (1 in) 2.540 m (100 in)

Table 2: Subset of design space explored. See Section 6 for a description of each design
parameter.

Design Parameters
engine size 1.532

wing area 432.2 m2 (4652 ft2)
wing aspect ratio 1.570
fuselage taper length 36.97 m (121.3 ft)
e�ective structural thickness over chord 3.002
wing sweep over design mach angle 1.158
wing taper ratio 0
fuel annulus width 0

Table 3: Best design found in the eight-dimensional space, for the �rst mission.
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Figure 4: Performance of multilevel strategies for the �rst mission. Optimization performance
increases as one moves down (lower cost) and to the left (closer to apparent optimum). The
cost shown is the estimated number of simulations needed to have a 99% chance of getting
within the speci�ed fraction of the optimum. The three curves labeled \trial1," \trial2," and
\trial3" represent three trials of the three-level method.
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at their optimized values from the �rst level,
and attempted to �nd the optimum in the
nozzle space, using random multistart. After
performing 1000 optimizations from random
starting points, CFSQP failed to �nd even a
single feasible point, so we declared this par-
ticular multilevel strategy to be a failure. We
determined that the airframe designed in the
�rst level, which had been designed using an
ideal nozzle in the simulator, was only suit-
able for use with an ideal nozzle, so it was not
possible to design a four-bar nozzle that would
work with this airframe.
To circumvent this problem, we allowed CF-

SQP to vary all twelve design parameters in
the second level. We performed a 5-point
random multistart at the �rst (8-dimensional)
level using the ideal nozzle, followed by a 100-
point random multistart optimization at the
second (12-dimensional) level using the four-
bar nozzle, where each optimization starting
point had the eight airframe parameters set
at their optimized values from the �rst level,
and had randomly generated values of the four
nozzle parameters. The second curve in Fig-
ure 4 shows the estimated cost of having a
99% chance of getting within various fractions
of the apparent optimum using this method.
Each point in this curve is based on the cost
of doing the 5-point 8-dimensional multistart,
plus an n-point 12-dimensional multistart, for
a value of n corresponding to the cost.
Two-level optimization resulted in roughly a

twofold reduction in the cost of getting within
a certain distance of the apparent optimum,
supporting our �rst hypothesis. This improve-
ment resulted from a combination of a reduced
cost per optimization, and a smaller number
of optimizations needed to �nd the apparent
global optimum.

8.3 Three-level optimization

Two-level optimization signi�cantly reduced

Design Parameters:

engine size 1.462

wing area 418.8 m2 (4508 ft2)

wing aspect ratio 1.557

fuselage taper length 36.88 m (121.0 ft)

effective structural thickness over chord 2.978%

wing sweep over design mach angle 1.159

wing taper ratio 0

fuel annulus width 0

nozzle convergent flap length 0.3889 m (15.31 in)

nozzle divergent flap length 1.792 m (70.54 in)

nozzle external flap length 2.578 m (101.48 in)

nozzle radius 7 length 0.3716 m (14.63 in)

Objective Function:

Takeoff Mass 162 200 kg

Nozzle geometry bounds:

0.0-z7 -0.3971

r6-r10 -0.09784

r7-r10 -0.2806

z10-(z7+cl+dl) -2.578

(r7-cl)-r6 -0.572

camin-camax -1.272

el-elmax -0.01806

elmin-el -1.328

minRadius8-idealThroatRadius -0.1240

idealThroatRadius-maxRadius8 -0.0001676

Table bounds:

ECD lbte -5.699

ECD ubte -42.12

rae x min -2.175

rae x max -1.825

rae y min -1.549

rae y max -8.451

CA x min -0.8136

CA x max -98.03

CA y min -4.121

CA y max -35.71

CV x min -0.8136

CV x max -98.03

CV y min -3.871

CV y max -35.70

CB x min -3.381

CB x max -11.62

CB y max -1.000

CB z min -0.4876

CB z max -0.5124

Aerodynamic bounds:

wing-loading bound -149.7 kg

fuel mass constraint 0

Lift coef-1 0.0

0.0-wing sweep -1.214 rad

wing sweep-pi/2 -0.3569 rad

Sanity check:

0.0-4barWork -191015

Design Constraint:

passenger constraint -2

Table 4: Best design found for mission of Ta-
ble 1. Negative values of constraint functions
indicate that the constraints are satis�ed. See
the appendix for a description of the constraint
functions.

13



the cost of �nding the apparent optimum
in the 12-dimensional airframe/nozzle space,
con�rming our �rst hypothesis. However, we
believed that further improvements in opti-
mization performance would be possible if we
could allow CFSQP to optimize the nozzle
without at the same time optimizing all of the
airframe parameters. We decided to try a new
strategy for the second level: letting CFSQP
optimize the nozzle parameters, and just one
airframe parameter. We chose wing area as
the one airframe parameter to optimize in the
second level, because we believe that it is the
most important airframe parameter. One can
think of wing area alone as an abstraction of
the entire airframe, to be used while optimiz-
ing the nozzle, much as the ideal nozzle is used
as an abstraction of the four-bar nozzle while
optimizing the airframe. Each run at the sec-
ond level started with the eight airframe pa-
rameters set to their optimized values from the
�rst level, and with the four nozzle parameters
set randomly, and then did an optimization in
the �ve-dimensional space de�ned by the four
nozzle parameters and wing area. (For each
starting point, we kept wing area at its opti-
mized value, rather than setting it to a random
value, because we believe that the optimized
value, although not optimal, should be better
than a random value.) We knew that opti-
mizing in this space would not allow the op-
timizer to get exactly to the global optimum,
so we added a third level in which the opti-
mizer is allowed to vary all twelve design pa-
rameters. The third level was run each time
that the level two optimization ended at a fea-
sible point. The three curves in Figure 4 la-
beled \trial1," \trial2," and \trial3" show the
estimated cost of having a 99% chance of get-
ting within various fractions of the apparent
optimum using the three-level method. Each
of these curves is based on a di�erent 5-point
multistart in the 8-dimensional space of level
one, followed by an n-point 5-dimensional mul-

tistart (for various values of n corresponding
to the costs) at level two, followed by a third
level in which there is a 12-dimensional op-
timization from each of the feasible apparent
optima of level two. We did three trials of the
three-level method to see if the results would
vary signi�cantly based on what happens in
the random multistart of level one; the graph
in Figure 4 shows that there is not much vari-
ation.

Using the three-level method provided
roughly an order of magnitude reduction in
cost compared with the two-level method, con-
�rming our second hypothesis. We believe
that there are three reasons for this speedup.
The �rst is that computing the gradient is less
expensive in the �ve-dimensional space. The
second is that in the two-level method, when
CFSQP is started from a point in which eight
of the design parameters are nearly optimal
and the other four are set to random values,
it does not know that the eight airframe pa-
rameters are near their globally optimal val-
ues, so it initially changes the airframe pa-
rameters to make the airframe more appropri-
ate for the suboptimal nozzle, and later has
to change them back as the nozzle becomes
closer to optimal, resulting in the need to per-
form more iterations. The third reason is that
when doing 5-dimensional optimizations, CF-
SQP has a higher success rate at �nding a fea-
sible point than when doing 12-dimensional
optimizations. In the two-level method, 30
of the 100 12-dimensional optimizations suc-
ceeded at �nding a feasible point, while in the
three-level method, an average of 76 out of the
100 �ve-dimensional optimizations succeeded
in �nding a feasible point. We believe that
the reason for this higher success rate is that
the constraint functions have fewer apparent
local optima in the 5-dimensional space than
they do in the 12-dimensional space.
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Altitude Duration
Phase Mach m ft (min) comment
1 0.227 0 0 5 \takeo�"
2 0.85 12 192 40 000 50 subsonic cruise (over land)
3 2.0 18 288 60 000 225 supersonic cruise (over ocean)

capacity: 70 passengers.

Table 5: Another mission speci�cation
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Figure 5: Performance of multilevel strategies for the second mission.

15



0

19.8298

47.2618

67.0916

0
1.6764

4.48947

-9.66345 0 9.66345

engineScale=1.14596
wing_area(m^2)=342.846
wing_aspect_ratio=1.0895
fuselage_taper_length(m)=39.6596
wing_t_over_c=0.0272754
fuel_annulus_width(m)=0
passenger_cabin_radius(m)=1.3716
structure_annulus_width(m)=0.3048
fuselage_mid_length(m)=27.432
fuselage_diameter(m)=3.3528
wing_sweep(rad)=1.29379
wing_root_chord(m)=35.4785
wing_span(m)=19.3269
v_tail_sweep(rad)=0.785398
v_tail_root_chord(m)=8.46036
v_tail_taper_ratio=0.33
v_tail_semi_span(m)=2.81307
v_tail_t_over_c=0.03
nacelle_length(m)=11.5824
nacelle_inlet_diameter(m)=0.85344
engine_diameter(m)=0.981579
wing_sweep_over_design_mach_angle=1.23548
wing_taper_ratio=0

Figure 6: Supersonic transport aircraft de-
signed by our system for the second mission
(dimensions in meters)

8.4 Another mission

To test the e�ect of the mission on our re-
sults, we repeated the experiments for another
mission | the mission of Table 5. We com-
pared the single-level method with the three-
level method. The results are shown in Fig-
ure 5. The best design found for this mission
is shown in Table 6 and Figure 6. We again
obtained an order of magnitude reduction in
cost using the multilevel method, con�rming
our third hypothesis.

Design Parameters:

engine size 1.155

wing area 336.0 m2 (3617 ft2)

wing aspect ratio 1.091

fuselage taper length 39.41 m (129.3 ft)

effective structural thickness over chord 2.673%

wing sweep over design mach angle 1.232

wing taper ratio 0

fuel annulus width 0

nozzle convergent flap length 0.7176 m (28.25 in)

nozzle divergent flap length 1.279 m (50.34 in)

nozzle external flap length 2.398 m (94.40 in)

nozzle radius 7 length 0.3782 m (14.89 in)

Objective Function:

Takeoff Mass 132 100 kg

Nozzle geometry bounds:

0.0-z7 -0.4095

r6-r10 -0.1053

r7-r10 -0.2196

z10-(z7+cl+dl) -2.406

(r7-cl)-r6 -0.8320

camin-camax -0.5552

el-elmax -0.02223

elmin-el -1.172

minRadius8-idealThroatRadius -0.2032

idealThroatRadius-maxRadius8 0

Table bounds:

ECD lbte -14.46

ECD ubte -9.046

rae x min -1.789

rae x max -2.211

rae y min -2.005

rae y max -7.995

CA x min -0.9595

CA x max -97.75

CA y min -6.426

CA y max -33.10

CV x min -0.9595

CV x max -97.75

CV y min -6.176

CV y max -33.10

CB x min -1.634

CB x max -11.98

CB y max -1.000

CB z min -0.5166

CB z max -0.4834

Aerodynamic bounds:

wing-loading bound -143.9 kg

fuel mass constraint 0

Lift coef-1 0

0.0-wing sweep -1.290 rad

wing sweep-pi/2 -0.2803 rad

Sanity check:

0.0-4barWork -233402

Design Constraint:

passenger constraint -2

Table 6: Best design found for mission of Ta-
ble 5. Negative values of constraint functions
indicate that the constraints are satis�ed. See
the appendix for a description of the constraint
functions.
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9 Analysis

We believe that the full twelve-dimensional
space has a large number of apparent local op-
tima, so that �nding the apparent global opti-
mum requires a large number of random mul-
tistarts. The two-level strategy reduces the
cost by getting eight of the twelve parame-
ters close to their optimal values in Level 1,
so that fewer random multistarts are needed
in the twelve dimensional space. This point
is illustrated by noting that the optimized de-
sign parameters in the eight-dimensional space
(see Table 3) are close to the optimized values
of these parameters in the twelve-dimensional
space (see Table 4), compared with the size of
the box (see Table 2). The three-level strat-
egy provides a further improvement by get-
ting all twelve parameters near their optimal
values in Levels 1 and 2, so that fewer twelve-
dimensional optimizations are needed in Level
3.
We showed our designs to our aircraft in-

dustry design expert and he reported that
the designs themselves and our methodology
both seemed reasonable from his point of view.
However, funding did not permit generating
designs for these missions using today's in-
dustry techniques which could then have been
compared with the designs our experiments
generated. The expert did inform us that this
sort of parametric design at a system level of
abstraction is widely used in the aircraft in-
dustry and is considered quite productive.

10 Limitations and Future

Work

One might ask whether the multilevel tech-
nique is applicable to design problems outside
the aircraft domain. We have formulated (but
not yet tested) multilevel techniques for two
other domains: the design of racing yachts of

the type used in the America's Cup race, and
the design of a supersonic missile inlet. So far
we have only performed single-level optimiza-
tions in each of these domains.28

In the racing yacht design domain,33, 34 we
could use two levels of representation and anal-
ysis for the keel. At the �rst level, the keel
would be analyzed using the following sim-
ple algebraic formula for e�ective draft (where
D is maximum draft, and Ams is the cross-
sectional area of the hull at mid-ship):

Teff = 0:92

r
D2

�

2Ams

�
(4)

At this level, the keel would be represented
using a small set of parameters that have an
e�ect on the formula, or on other quantities
computed by the yacht simulator, such as sur-
face area or displacement. This small set of
parameters would include the keel's height and
taper ratio.

At the second level, the keel would be ana-
lyzed using PMARC, a panel method. Since
PMARC is sensitive to the shape of the keel,
the keel would be represented using a B-Spline
surface. The cost of analyzing the keel with
PMARC is orders of magnitude greater than
the cost of evaluating the algebraic formula,
so it would be potentially very bene�cial to
perform most of the optimization at the �rst
level.

In the supersonic missile inlet design do-
main,35, 36 we have used an empirical code
known as NIDA to analyze a missile inlet
rapidly, and a computational 
uid dynam-
ics code known as GASP to analyze it with
greater accuracy. Analyzing a single missile
inlet with GASP takes about one CPU week,
which makes it infeasible to perform optimiza-
tions with GASP using our current computa-
tional resources. We have instead performed
optimizations with NIDA, and used GASP
to verify the optimized designs. If we had
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greater computational resources available, we
could perform inlet optimization at two lev-
els, which would be likely to produce better
designs than our current one-level NIDA op-
timization. The �rst level would be the same
as our current optimizations | it would use
NIDA for the analysis, and a nine-parameter
design space that allows the optimizer to vary
only those aspects of the inlet that are prop-
erly modeled by NIDA. The second level would
use GASP for the analysis, and would have a
higher-dimensional design space (possibly us-
ing splines) that allows the optimizer to make
a wider range of changes to the shape of the
inlet, since GASP is much more sensitive to
the inlet's shape.
Note that these two applications of the mul-

tilevel paradigm are di�erent from the air-
frame/nozzle domain application, in that the
two levels do not decompose the search space.
Instead, the �rst level is an abstraction of the
second level. We hope that the simpli�ed,
lower-dimensional abstract level will have its
global optimum close to the global optimum
of the second level. In each case, the �rst level
uses a simulator that is orders of magnitude
faster than the more accurate simulator at the
second level, so that we can perform numer-
ous optimizations at the �rst level in less CPU
time than it takes to do a single simulation
at the second level. We hope that after �nd-
ing the global optimum at the �rst level, we
will be able to reach the global optimum at
the second level using only one optimization,
or perhaps using a small number of random
multistarts. It may also be the case that the
simpli�ed search space of level one has fewer
local optima than the full search space of level
two. Whether the �rst level has fewer local
optima or not would not be very important,
however, since it would be possible to perform
a large number of random multistarts at the
�rst level at very little cost compared with the
cost of performing an optimization at the sec-

ond level.

It may be di�cult to identify the appropri-
ate simulator and search-space abstractions in
still other domains. Automatically identify-
ing such abstractions is an area for future re-
search. Finally, the performance of our ap-
proach of performing optimization in the pres-
ence of many apparent local optima by using a
gradient-based optimizer at multiple levels of
abstraction needs to be compared with that of
global methods such as genetic algorithms and
simulated annealing. We may even �nd that
it is possible to use these global methods at
multiple levels of abstraction, for even better
optimization performance.

11 Conclusion

Multilevel representations have been stud-
ied extensively by arti�cial intelligence re-
searchers. We have presented a general
method that utilizes the multilevel paradigm
to attack the problem of performing multidis-
cipline engineering design optimization in the
presence of many local optima. The method
uses a multidisciplinary simulator at multiple
levels of abstraction, paired with a multilevel
search space. We demonstrated the e�ective-
ness of this general method by testing it in
the domain of conceptual design of supersonic
transport aircraft, focusing on the airframe
and the exhaust nozzle, and using sequential
quadratic programming as the optimizer at
each level. We found that using multilevel sim-
ulation and optimization can decrease the cost
of design space search by an order of magni-
tude.
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Appendix

A Constraints

Nozzle geometry bounds: The geometry
of the nozzle's fourbar linkage must sat-
isfy the following constraints:

NG1 = 0� z7. Nozzle geometry bound.

NG2 = r6�r10. Nozzle geometry bound.

NG3 = r7�r10. Nozzle geometry bound.

NG4 = z10� (z7+ lc+ ld). Nozzle geom-
etry bound.

NG5 = (r7 � lc) � r6. Nozzle geometry
bound.

CA = <minimum angle to which con-
vergent 
ap can move, while still
maintaining a convergent-divergent
con�guration> � <maximum angle
to which convergent 
ap can move,
while still maintaining a convergent-
divergent con�guration>.

ELMAX = <length le of external noz-
zle 
ap> � <maximum length ex-
ternal nozzle 
ap could have, with
the given values for the rest of the
nozzle geometry, while still allow-
ing the nozzle to be connected as a
convergent-divergent nozzle>.

ELMIN = <minimum length external
nozzle 
ap could have, with the
given values for the rest of the
nozzle geometry, while still allow-
ing the nozzle to be connected
as a convergent-divergent nozzle>
� <length le of external nozzle

ap>.

R8LOW = <smallest value r8 can
achieve with current geometry>
� <smallest value for r8 required
during mission simulation>.

R8HIGH = <largest
value for r8 required during mission
simulation> � <largest value r8 can
achieve with current geometry while
maintaining a convergent-divergent
con�guration>.

Table bounds: The simulator must not ex-
trapolate outside certain tables of experi-
mental data:
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ECD ubte = <maximum throttle re-
quired during mission simulation>
� <maximum throttle setting al-
lowed for engine>. If an impossibly
high throttle is required to 
y the
mission, the simulation will continue
using extrapolation, but the value
of ETUB will indicate the extent to
which the engine model assumptions
are violated.

ECD lbte = <minimum throttle setting
allowed for engine> � <minimum
throttle required during mission
simulation>.

rae: Similar to above | violation of
bounds for a two-dimensional table
of experimental data on supersonic
drag.

CA: violation of bounds for a two-
dimensional table of experimental
data on nozzle angularity thrust loss.

CV: violation of bounds for a two-
dimensional table of experimen-
tal data on nozzle friction veloc-
ity/thrust loss.

CB: violation of bounds for a two-
dimensional table of experimental
data on nozzle boattail (external)
drag.

Aerodynamic bounds:

These constraints ensure that the aircraft
is capable of 
ying the speci�ed mission:

WLUB

= <maximum wing loading during
mission simulation> � <maximum
wing loading simulator can validly
model>.

FM = <fuel mass that current can-
didate design requires to complete
mission> � <fuel mass that can be

stored in available volume for cur-
rent candidate design>.

STALL

= <maximum lift coe�cient during
mission simulation> � <maximum
lift coe�cient simulator can validly
model>. The simulator assumes
wings won't stall, and this constraint
function computes how well that as-
sumption is satis�ed.

wing sweep: Wing sweep angle must be
between 0 and �=2.

Sanity check: This constraint prevents a
certain type of insane result:

4barWork: The work performed by the
actuators in the fourbar linkage must
be positive.

Design constraint: This constraint ensures
that the aircraft satis�es a particular con-
straint speci�ed by the engineer:

PASS = <passenger capacity required
for the mission> � <passenger ca-
pacity available with current design
variables>.
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